Cara Mengerjakan Soal Persamaan Kuadrat Baru

Persamaan kuadrat baru disusun atau dibentuk dari hubungannya dengan persamaan kuadrat lama. Soal-soal seperti ini, sering muncul dalam Ujian Nasional SMA/sederajat. Sehingga, untuk keperluan tersebut, rumus-rumus cepat berikut ini dapat digunakan. Namun, apabila tidak mau menghapal beberapa rumus berikut ini, akan diberikan pada akhir pembahasan bagaimana menyusun persamaan kuadrat baru tanpa menggunakan rumus. Hal ini bermanfaat jika kita lupa rumusnya.

Rumus Cepat Menyusun Persamaan Kuadrat Baru

Untuk menyusun persamaan kuadrat baru, kita dapat menggunakan rumus cepat sbb.
1. Persamaan kuadrat baru yang akar-akarnya k kali  akar-akar persamaan $ax^2 + bx + c = 0$ adalah:
$ax^2 + kbx + k2c = 0$
2. Persamaan kuadrat baru yang akar-akarnya kebalikan ( 1/x1 dan 1/x2 ) dari akar-akar persamaan $ax^2 + bx + c = 0$ adalah:
$cx^2 + bx + a = 0$
3. Persamaan kuadrat baru yang akar-akarnya berlawanan  dengan akar-akar persamaan $ax^2 + bx + c = 0$ adalah:
$ax^2 - bx +c = 0$
4. Persamaan kuadrat baru yang akar-akarnya kuadrat dari akar-akar persamaan $ax^2 + bx + c = 0$ adalah:
$a^2x^2 + ( b^2 - 2ac ) x + c^2 = 0$
5. Persamaan kuadrat baru yang akar-akarnya pangkat 3 dari akar-akar persamaan $ax^2 + bx + c = 0$ adalah:
$a^3x^2 + ( b^3 - 3ac ) x + c^3 = 0$
6. Persamaan kuadrat baru yang akar-akarnya k lebih dari akar-akar persamaan $ax^2 + bx + c = 0$ adalah:
$a( x - k)^2 + b( x - k) +c = 0$
7. Persamaan kuadrat baru yang akar-akarnya k kurang  dari akar-akar persamaan $ax^2 + bx + c = 0$ adalah:
$a( x + k)^2 + b( x + k) +c = 0$
8. Persamaan kuadrat baru yang akar-akarnya 1/x12 dan 1/x22 dari akar-akar persamaan $ax^2 + bx + c = 0$ adalah:
$c^2x^2 - ( b^2 - 2ac ) x + a^2 = 0$
9. Persamaan kuadrat baru yang akar-akarnya x1 + x2 dan x1.x2 dari akar-akar persamaan $ax^2 + bx + c = 0$ adalah:
$a^2x^2 + ( ab - ac ) x - bc = 0$
Contoh soal:
1. Tentukan persamaan kuadrat baru yang akar-akarnya dua kali dari akar $x^2 - 5x + 3 = 0$
Jawab:
Dari persamaan $x^2 - 5x + 3 = 0$ diketahui a=1; b=-5; c=3; k=2.
Rumus cepat: $ax^2 + kbx +k2c = 0$
$\begin{align} (1)x^2 + (2)(-5)x + (2)2 (3) &= 0 \\ x^2 + (-10)x + 4(3) &= 0 \\ x^2 - 10x + 12 &= 0 \end{align}$
2. Tentukan persamaan kuadrat baru yang akar-akarnya kebalikan dari akar $2x^2 - 8x + 6 = 0$
Jawab:
Dari persamaan $2x^2 - 8x + 6 = 0$ diketahui : a=2; b=-8; c=6;
Rumus cepat: $cx^2 + bx + a = 0$
$\begin{align} (6)x^2 + (-8)x + 2 &= 0 \\ 6x^2 - 8x + 2 &= 0 \end{align}$
Adapun jika kita lupa rumus-rumus di atas, kita cukup mengetahui bahwa apabila $x_1$ dan $x_2$ adalah akar-akar suatu persamaan kuadrat maka persamaan kuadrat tersebut adalah:
$(x-x_1)(x-x_2)=0 \Leftrightarrow x^2-(x_1+x_2)x+x_1.x_2=0$
Sehingga, kita hanya perlu mengetahui jumlah dan hasil kali akar-akar persamaan kuadrat sebelumnya. Untuk keperluan tersebut, silahkan baca Cara Mengerjakan Soal Akar-akar PK. Perhatikanlah contoh-contoh di bawah ini!
Contoh Soal Menyusun Persamaan Kuadrat Baru
1. Susunlah persamaan kuadrat yang akar-akarnya –3 dan 4.
Jawab:
$\begin{align} x^2-(x_1+x_2)x+(x_1.x_2) &=0 \\  x^2-(-3+4)x+((-3) \times 4) &=0 \\ x^2-x-12 &=0 \end{align}$
2. Susunlah persamaan kuadrat baru yang akar-akarnya tiga kali akar-akar $x^2-5x-6=0$
Jawab:
Dari persamaan $x^2-5x-6=0$, diketahui a=1, b=-5, c=-6 sehingga
$\begin{align} 3x_1+3x_2 &=3(x_1+x_2) \\ &=3(5) \\ &=15 \\ 3x_1 . 3x_2 &=9(x_1.x_2) \\ &=9(-6) \\ &=-54 \end{align}$
Jadi, persamaan kuadrat barunya adalah $x^2-15x-54=0$.
3.  Akar-akar persamaan $3x^2+6x-1=0$ adalah p dan q. Persamaan kuadrat (1-2p) dan (1-2q) adalah…
Jawab:
Dari persamaan $3x^2+6x-1=0$, diketahui a=3, b=6, dan c=-1 sehingga
$\begin{align} (1-2p)+(1-2q) &=2-2(p+q) \\ &=2-2(\frac{-6}{3}) &=2-2(-2) \\ &=2+4 \\ &=6 \end{align}$ dan
$\begin{align} (1-2p)(1-2q) &=1-2(p+q)+4pq \\ &=1-2( \frac{-6}{3})+4( \frac{-1}{3}) \\ &=1-2(-2)- \frac{4}{3} \\ &=5-\frac{4}{3} \\ &=\frac{11}{3} \end{align}$
Jadi, PK barunya adalah $x^2-6x+ \frac{11}{3}=0$ atau $3x^2-18x+11=0$.
4. Jika m dan n adalah akar-akar persamaan $x^2-5x-1=0$ maka persamaan kuadrat baru yang akar-akarnya adalah 2m+1 dan 2n+1 adalah…
Jawab:
Dari persaman $x^2-5x-1=0$, diketahui a=1, b=-5, c=-1 sehingga
$\begin{align} (2m+1)+(2n+1) &=2(m+n)+2 \\ &=2(5)+2 \\ &=12 \\  (2m+1)(2n+1) &=4mn+2(m+n)+1 \\ &=4(-1)+2(5)+1 \\ &=7 \end{align}$

Jadi, persamaan kuadrat barunya adalah $x^2-12x+7=0$

Berlangganan Update Artikel Terbaru

0 Response to "Cara Mengerjakan Soal Persamaan Kuadrat Baru"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel